MODELO PARA DETERMINAR AREAS SUSCEPTIBLES A LA EXPANSIÓN DEL RETAMO ESPINOSO (*Ulex europaeus* L.) MEDIANTE EL USO DE HERRAMIENTAS ESPACIALES EN LA LOCALIDAD DE SANTA FÉ, BOGOTÁ D.C.

WILLIAN GONZALO BENAVIDES MORENO
GINA ALEJANDRA TEJADA GUTIÉREZ
GERMÁN URUEÑA SERRANO

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI
CIAF - CENTRO DE INFORMACIÓN Y DESARROLLO EN INFORMACIÓN GEOGRÁFICA
ESPECIALIZACIÓN EN SISTEMAS DE INFORMACIÓN GEOGRÁFICA (SIG)
BOGOTÁ D.C.
NOVIEMBRE 2017
MODELO PARA DETERMINAR AREAS SUSCEPTIBLES A LA EXPANSIÓN DEL RETAMO ESPINOSO (*Ulex europaeus* L.) MEDIANTE EL USO DE HERRAMIENTAS ESPACIALES EN LA LOCALIDAD DE SANTA FÉ, BOGOTÁ D.C.

WILLIAN GONZALO BENAVIDES MORENO
GINA ALEJANDRA TEJADA GUTIÉREZ
GERMÁN URUEÑA SERRANO

TRABAJO DE INVESTIGACIÓN PARA OPTAR POR EL TÍTULO DE: ESPECIALISTAS EN SISTEMAS DE INFORMACIÓN GEOGRÁFICA

DIRECTOR(A):
SONIA GARZÓN
Esp. Sistemas de información geográfica

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI
CIAF - CENTRO DE INFORMACIÓN Y DESARROLLO EN INFORMACIÓN GEOGRÁFICA
ESPECIALIZACIÓN EN SISTEMAS DE INFORMACIÓN GEOGRÁFICA (SIG)

BOGOTÁ D.C.
NOVIEMBRE
2017
INDICE

1. **INTRODUCCIÓN** ... 7
2. **PLANTEAMIENTO DEL PROBLEMA** ... 9
3. **OBJETIVOS** .. 10
 3.1. **OBJETIVO GENERAL** .. 10
 3.2. **OBJETIVOS ESPECÍFICOS** .. 10
4. **MARCO TEORICO** ... 11
 4.1. **ANTECEDENTES** .. 11
 4.2. **ÁREA DE ESTUDIO** ... 12
5. **METODOLOGÍA** .. 13
 5.1. **REQUERIMIENTOS ECOLÓGICOS DE LA ESPECIE** ... 13
 5.1.1 Modelo conceptual .. 13
 5.1.2 Análisis Multicriterio .. 13
 5.2. **DISEÑO FÍSICO (MODEL BUILDER)** .. 13
 5.2.1. Fase de estandarización de insumos ... 13
 5.2.2. Preparación capas de entrada ... 13
 5.2.3. Modelo físico (model builder) .. 16
 5.3. **IDENTIFICACIÓN DE ÁREAS VULNERABLES A LA EXPANSIÓN Y REBROTE DEL RETAMO ESPINOSO** .. 16
6. **RESULTADOS** ... 17
 6.1 **MODELO CONCEPTUAL** ... 17
 6.2 **PONDERACIÓN DE CAPAS** .. 18
 6.3 **MATRICES DE SUBCriterIOS** .. 20
7. **ANÁLISIS DE RESULTADOS** ... 23
 7.1 **ÁREAS CON MAYOR PROBABILIDAD A LA EXPANSIÓN Y REBROTE DE RETAMO ESPINOSO** ... 23
 CONCLUSIONES ... 29
 RECOMENDACIONES .. 30
 BIBLIOGRAFÍA .. 31
 ANEXOS .. 34
 Anexo 1. Mapa- SUSCEPTIBILIDAD TOTALEXPANSIÓN Y REBROTE RETAMO ESPINOSO: 34
 Anexo 2. MODELO- MODEL BUILDER .. 35
LISTA DE TABLAS

Tabla 1. Preparación capas de entrada. ...14
Tabla 2. Ponderaciones por componente. ...18
Tabla 3. Matriz normalizada de subcriterios climáticos.20
Tabla 4. Matriz normalizada de subcriterios sociales..21
Tabla 5. Matriz normalizada de subcriterios fisiográficos......................................21
Tabla 6. Normalización de subcriterios edáficos..21
Tabla 7. Normalización de criterios...22
Tabla 8. Áreas y porcentajes de la susceptibilidad a la expansión y rebrote del retamo espinoso. ..28
LISTA DE FIGURAS

Pág.

Figura 1. Ubicación satelital localidad tercera de Santa Fe. 12
Figura 2. Modelo conceptual. .. 17
Figura 3. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio climático. ... 23
Figura 4. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio social. .. 24
Figura 5. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio fisiográfico. ... 25
Figura 6. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio de cobertura. .. 26
Figura 7. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio edáfico ... 27
Figura 8. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso. 28
Nota de aceptación:

Firma del presidente del jurado

Firma del jurado

Firma del jurado

1. INTRODUCCIÓN

Los cerros orientales de la ciudad de Bogotá D.C. en sus orígenes presentaban condiciones ambientales diferentes a las actuales. Estos se caracterizaban por paisajes rocosos con baja densidad de suelo y por ende poca vegetación, en los años 50 se pretendió cambiar el paisaje de los cerros orientales introduciendo especies exóticas con el fin de darle mayor densidad a estas zonas de la ciudad y generar un ambiente de paisaje más favorable para los cerros. En esta incorporación de especies, variedades exóticas tales como el eucaliptó y el pino empezaron a crear otra clase de coberturas vegetales en los suelos de los cerros orientales. A medida que estas coberturas fueron aumentando, también se fue dando el desarrollo de la ciudad, en este periodo de tiempo se hicieron vitales las fuentes hídricas para el abastecimiento de las comunidades, partiendo de esto, se entiende que los cuerpos de agua pueden ser susceptibles a las captaciones ilegales, razón por la cual en la década de los años 50 se tomaron decisiones administrativas orientadas a proteger o realizar cerramientos con cercas vivas de los predios con nacimientos de agua con la especie exótica denominada retamo espinoso (*Ulex europaeus* L.) ya que como su nombre lo indica, genera una barrera impenetrable dado a su condición áspera-cortopunzante, además, esta especie vegetal se caracteriza por presentar un crecimiento vertiginoso considerando que sus mecanismos de reproducción son altamente acelerados además de ser pirófila, es decir, es proclive o presenta afinidad con generar incendios forestales, lo que ha representado riesgos ambientales altos involucrando de forma perjudicial ecosistemas estratégicos y fuentes hídricas de los cerros orientales de la ciudad de Bogotá.

La metodología planteada para la realización de la investigación se basó en tres ítems generales, el primero hace énfasis a la información obtenida de los requerimientos ecológicos de la especie, donde se determinaron las variables esenciales en el nicho teniendo en cuenta los componentes climáticos (temperatura, precipitación y radiación); componente edáfico (erosión y suelo) y el componente fisiográfico (proximidad cuerpos de agua, pendiente y altitud), así mismo se consideró la importancia del componente social (densidad de viviendas, área urbana y proximidad vías) y la cobertura vegetal en el establecimiento y propagación de (*Ulex europaeus* L.) adicional a esto, se efectúo la evaluación multicriterio con pares de Satty mediante el criterio profesional de 3 conocedores de la temática ambiental (Biólogo e Ing. Forestal, Ing. ambiental).

La segunda fase de la metodología se enfocó en la realización del diseño del modelo físico (model builder), donde se efectuó una estandarización de insumos, cada capa se proyectó al sistema de coordenadas Magna Colombia Bogotá y se manejó una escala de trabajo 1:50.000. Una vez las capas se definieron en la fase conceptual, se desarrolló el modelo físico que incorporó las relaciones, pesos y ponderaciones producto de la integración de los conceptos emitidos por los profesionales.
evaluadores de este proyecto de investigación. Seguido a esto, se realizó la preparación de capas por medio de información espacial en formato shapefile (vector) y Geotiff (raster) proveniente de distintas fuentes (IDECA, IDEAM, IGAC, ALCALDÍA LOCAL DE SANTA FE), algunos de los procesos del modelo se desarrollaron a partir de un modelo de elevación digital (DEM -12 metros de pixel), generado con curvas de nivel cada 5 metros escala 1:2.000 del mapa de referencia del IDECA [11].

El tercer proceso de la parte metodológica hace referencia a la identificación de áreas vulnerables a la expansión y rebrote del retamo espinoso dónde se obtuvo el porcentaje y área vulnerable a la expansión y rebrote, así como los sitios de propagación predominante.

Las limitaciones en esta investigación fueron la disponibilidad y escala de los insumos y la cantidad de criterios por profesional para la construcción del modelo.

Los resultados de la investigación se orientaron a que el retamo espinoso, presenta alta capacidad invasiva debido al amplio espectro de zonas de vida y condiciones edáficas, fisiográficas y edafoclimáticas propicias para su proliferación y establecimiento [9], características coincidentes con las que cuenta la zona de estudio en un 38.3 %.

Se puede considerar la cobertura vegetal como uno de los componentes con mayor influencia para la expansión y rebrote del retamo espinoso, esto se atribuye a que la especie es pionera, es decir, gusta del sol, presenta bajos requerimientos nutritivos en el suelo, es de crecimiento rápido, entre otras características [9], que se traducen en una incorporación rápida y proliferante de la especie vegetal en la zona estudiada, incluso mucho antes de que otras plantas puedan hacerlo. En ese sentido, las trasformaciones en el uso del suelo, cambiando la vegetación densa por diferentes tipos de cultivos y pastos limpios, favorecen en gran medida la capacidad invasiva de la especie [11]. A partir del análisis multicriterio del presente estudio, es posible desarrollar planteamientos propicios para el control, sustitución y restauración ecológica en pro de evitar la expansión y rebrote del retamo espinoso, logrando el equilibrio ambiental de los cerros orientales de la ciudad de Bogotá.
2. PLANTEAMIENTO DEL PROBLEMA

El impacto de las especies invasoras es una de las principales amenazas que pesa sobre la biodiversidad. Se considera que una especie exótica es invasora cuando permanece en el ecosistema donde ha sido introducida y ocasiona perturbaciones severas al desplazar especies nativas o afectar el funcionamiento de componentes del ecosistema \(^2\) \(^3\). El retamo espinoso, (*Ulex europaeus* L.) representa una amenaza importante para las especies nativas. Puede suprimir plantaciones de bosques y excluir animales rumiantes, al igual que incrementar el riesgo de incendios, tanto en hábitats naturales como en áreas urbanas \(^4\).

El presente estudio se desarrolló en la localidad tercera de Santa Fé, territorio con una zona rural que ocupa el 82% de su jurisdicción, sus veredas Monserrate, Guadalupe, El Verjón Bajo y Alto han entrado en conflicto ambiental y social debido a la expansión del retamo espinoso (*Ulex europaeus* L.), requiriendo de una atención acertada para remediar esta problemática. Es así como los Sistemas de Información Geográfica (SIG), pueden ser una herramienta fundamental en la identificación, modelación y evaluación para la toma de decisiones y planeación oportuna en la erradicación efectiva de la especie exótica que está perjudicando a los cerros orientales de la ciudad de Bogotá \(^1\).
3. OBJETIVOS

3.1. OBJETIVO GENERAL

Desarrollar un modelo para determinar áreas susceptibles a la expansión del retamo espinoso (*Ulex europaeus* L.) mediante el uso de herramientas espaciales aplicado a la localidad tercera de Santa fe en la ciudad de Bogotá.

3.2. OBJETIVOS ESPECÍFICOS

- Diseñar un modelo basado en análisis multicriterio, para determinar áreas susceptibles a la expansión del retamo espinoso (*Ulex europaeus* L.).

- Crear una herramienta de análisis espacial implementada en un software para SIG, que permita la determinación de áreas susceptibles a la expansión de retamo espinoso.

- Evaluar el modelo en función de las variables físicas y bióticas de la localidad de Santa fe de la ciudad BOGOTÁ D.C.
4. MARCO TEORICO

4.1. ANTECEDENTES

Países pertenecientes a la Comunidad Andina, han manifestado su preocupación por la problemática relacionada con la amenaza de la invasión biológica del retamo espinoso (*Ulex europaeus* L.), en el año 2001, se desarrolló en Brasilia una Reunión de Trabajo enfocada a la temática e importancia de las Especies Exóticas Invasoras (RTEEI) con el fin de efectuar un diagnóstico oportuno con los países asistentes. Colombia aparece como el país con menos reportes de especies invasoras en los diferentes grupos taxonómicos, posiblemente debido a la falta de investigación y estudios afines del tema[^17].

Los estudios desarrollados a nivel nacional respecto especies invasoras son mínimos, la preocupación del país por dicha problemática es muy actual, aun así, algunas entidades públicas y privadas se han interesado y esforzado en orientarse en el control de dichas especies y su oportuna restauración ecológica. Hoy en día el Jardín Botánico José Celestino Mutis, publicó una Guía técnica para la restauración ecológica de áreas afectadas por especies vegetales invasoras en el distrito capital[^17], donde hace una descripción de los agentes invasores; retamo espinoso (*Ulex europaeus* L.) y retamo liso (*Teline monspessulana*), estrategias de manejo y áreas afectadas por la invasión.

La Secretaría Distrital de Ambiente, ha ejecutado dos tipos de estudios de restauración ecológica en la cuenca sub-cuenca media y alta del río Teusacá y en áreas rurales de Bogotá, estos son: Infestación de retamo espinoso (*Ulex europaeus*). Guía para la restauración de ecosistemas nativos en las áreas rurales de Santa Fé de Bogotá[^18] y Diseño de experiencias piloto como estrategias de restauración ecológica en potreros abandonados e invadidos por retamo espinoso (*Ulex europaeus*), en la sub-cuenca media y alta del río Teusacá, cerros orientales de Bogotá[^19]. Estos dos estudios evalúan la ecología de la especie; su morfología, ciclo de vida, reproducción y limitantes en función de su erradicación y futura restauración de áreas invadidas.

Para la ciudad de BOGOTA D.C., específicamente se han desarrollado líneas de trabajos afines con estrategias de control manejo y restauración del retamo espinoso (*Ulex europaeus* L.) sin mucho éxito en términos de costos para el distrito Capital. Se destaca la investigación realizada por Vargas y colaboradores en el 2011 para la vereda El Hato, zona rural de la localidad de Usme. En la investigación se propone en una de sus fases, la caracterización espacial como estrategia para determinar tanto el estado de las zonas afectadas como las áreas propensas a invasión de la especie mencionada. Se encontró que los parches de retamo
espinoso se distribuyen sobre áreas abiertas principalmente en bordes (38,1%; matorral 0,1%), como también en plantaciones (61.6% de los parches de retamo) [5].

Se cuenta como referente principal de modelamiento de hábitat de retamo espinoso (*Ulex europaeus* L.) el trabajo realizado por Castillo Jaime en el 2008 en donde se realizó una predicción de la distribución de los nichos adecuados para la invasión biológica del retamo espinoso (*Ulex europaeus* L.) y su relación espacial con las áreas destinadas a la conservación, en la cuenca alta del río [6]. En este trabajo se identificó la precipitación, altitud y radiación solar como variables esenciales para favorecer o limitar la invasión biológica del retamo espinoso (*Ulex europaeus* L.). El modelamiento fue realizado mediante el algoritmo de máxima entropía implementado en el software de MaxEnt.

4.2. ÁREA DE ESTUDIO

De acuerdo con la Alcaldía Mayor de Bogotá (2017): La ciudad de Bogotá está ubicada en el Centro del país, en la cordillera oriental, la capital del país tiene una extensión aproximada de 33 kilómetros de sur a norte y 16 kilómetros de oriente a occidente y se encuentra situada en las siguientes coordenadas: Latitud Norte: 4° 35'56" y Longitud Oeste de Greenwich: 74°04'51". Está dentro de la zona de confluencia intertropical. La localidad Santa Fe es la número 3 de la ciudad, limita al norte con la localidad de Chapinero, al sur con la localidad de San Cristóbal, Antonio Nariño, al oriente con el municipio de Choachí y al occidente con las localidades de Teusaquillo, Mártires y Antonio Nariño [7]. (Ver figura 1).

Figura 1. Ubicación satelital localidad tercera de Santa Fe.

Fuente: Google Earth (2016).
5. METODOLOGÍA

5.1. REQUERIMIENTOS ECOLÓGICOS DE LA ESPECIE

5.1.1 Modelo conceptual

Se predefinieron las variables esenciales en el nicho de la especie vegetal de la siguiente forma: componente climático (Temperatura, Precipitación y Radiación); componente edáfico (erosión y suelo) y el componente fisiográfico (Proximidad cuerpos de Agua, Pendiente y altitud), así mismo se consideró la importancia del componente social (Densidad de viviendas, área urbana y proximidad vías) y la cobertura vegetal en el establecimiento y propagación de (Ulex europaeus L.)\(^9\).

5.1.2 Análisis Multicriterio

A partir del concepto de 3 profesionales del área Ambiental (Biólogo, Ingeniero forestal e Ingeniero Ambiental), se evaluó mediante matrices de Satty \(^{10}\), el peso (%) de las variables que determinan el nicho de la especie (Ulex europaeus L.)\(^9\).

5.2. DISEÑO FÍSICO (MODEL BUILDER)

5.2.1. Fase de estandarización de insumos

Se estandarizó la Información para evitar inconsistencias al momento de sobreponer capas en procesos de análisis espaciales \(^{13}\), por tanto, cada una de éstas se proyectaron al sistema de coordenadas Magna Colombia Bogotá, así mismo independiente de su formato originario, se manejó una escala de trabajo 1:50.000 y se verificó detalladamente tanto la topología como los atributos. Una vez las capas fueron definidas en la fase conceptual, se desarrolló un modelo físico que incorporó las relaciones, pesos y ponderaciones producto de la integración de conceptos de los conocedores de la especie en estudio \(^{14}\).

5.2.2. Preparación capas de entrada

Se obtuvo información espacial provienen de distintas fuentes (IDECA, IGAC, ALCALDÍA LOCAL DE SANTA FE), en formato shapefile (vector) y Geotiff (raster). Algunos de los procesos del modelo se desarrollaron a partir de un modelo de elevación digital (DEM -12 metros de pixel), generado con curvas de nivel cada 5 metros escala 1:2.000 Mapa de referencia IDECA \(^{11}\). (Ver tabla 1).
Tabla 1. Preparación capas de entrada.

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>VARIABLE</th>
<th>CAPA INICIAL</th>
<th>FUENTE</th>
<th>PROCESAMIENTO</th>
<th>TIPO DE DATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación</td>
<td>Precipitación</td>
<td>Puntos precipitación (mm) por estación (formato vector; geometría: punto)</td>
<td>Red de monitoreo calidad del Aire Bogotá [20].</td>
<td>Digitalización coordenada de estaciones con el atributo precipitación, generación de isoyetas.</td>
<td>Continuo</td>
</tr>
<tr>
<td>Radiación Solar</td>
<td>Radiación Solar</td>
<td>Puntos Radiación solar (W/m²) (formato vector; geometría: punto)</td>
<td>Red de monitoreo calidad del aire Bogotá [20].</td>
<td>Digitalización coordenada de estaciones con el atributo Radiación, generación de Isohelia</td>
<td>Continuo</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Temperatura</td>
<td>Modelo de elevación digital (DEM) formato raster, 12 metros pixel</td>
<td>IDECA-Mapa de referencia [12].</td>
<td>Reclasificación de altura conforme ecoclima Bogotano.</td>
<td>Continuo</td>
</tr>
<tr>
<td>COMPONENTE</td>
<td>VARIABLE</td>
<td>CAPA INICIAL</td>
<td>FUENTE</td>
<td>PROCESAMIENTO</td>
<td>TIPO DE DATO</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Social</td>
<td>Densidad de Viviendas</td>
<td>Puntos construcciones Bogotá (formato vector; geometría: punto)</td>
<td>IDECA-Mapa de referencia [12].</td>
<td>Generación de puntos de construcción a partir de la geometría de polígono.</td>
<td>Categorico</td>
</tr>
<tr>
<td></td>
<td>Proximidad vías</td>
<td>Vías Bogotá escala 1:2.000 (formato vector geometría: Polínea)</td>
<td>IDECA-Mapa de referencia [12].</td>
<td>Se reclasifica el dato de altura conforme la relación con la eoclima Bogotano.</td>
<td>Continuo</td>
</tr>
<tr>
<td>Área Urbana</td>
<td>Cobertura nivel 3 Corine tejido urbano continuo (Geometría: Polígono)</td>
<td>Aporte Alcaldía local de Santa Fe [21].</td>
<td></td>
<td>Distancia euclidiana de los centros urbanos.</td>
<td>Continuo</td>
</tr>
<tr>
<td></td>
<td>Proximidad cuerpos de Agua</td>
<td>Cuerpos de Agua Bogotá escala 1:2000 (Geometría: polígon)</td>
<td>IDECA-Mapa de referencia [12].</td>
<td>Buffer de acuerdo al tipo de cuerpo de agua.</td>
<td>Continuo</td>
</tr>
<tr>
<td>Fisiografía</td>
<td>Pendiente</td>
<td>Modelo de elevación digital (DEM) formato raster, 12 metros pixel</td>
<td>IDECA-Mapa de referencia [12].</td>
<td>Generación de pendiente mediante la herramienta slope.</td>
<td>Continuo</td>
</tr>
<tr>
<td></td>
<td>Altitud</td>
<td>Modelo de elevación digital (DEM), 12 metros pixel</td>
<td>IDECA-Mapa de referencia [12].</td>
<td>sin modificación.</td>
<td>Continuo</td>
</tr>
<tr>
<td>COMPONENTE</td>
<td>VARIABLE</td>
<td>CAPA INICIAL</td>
<td>FUENTE</td>
<td>PROCESAMIENTO</td>
<td>TIPO DE DATO</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Cobertura vegetal</td>
<td>Cobertura Vegetal</td>
<td>Cobertura Vegetal cerros orientales (formato vector; geometría: Polígono)</td>
<td>Aporte Alcaldía local de Santa Fe [21].</td>
<td>Ajuste de atributos nivel 3 Metodología Corine Land Cover.</td>
<td>Categórico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suelos</td>
<td></td>
<td>Mapa suelos IGAC Escala 1:100.000 (formato vector; geometría: Polígono)</td>
<td>Aporte Alcaldía local de Santa Fe [21].</td>
<td>sin modificación.</td>
<td>Categórico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosión</td>
<td></td>
<td>Erosión localidad de Santa Fe (formato: vector; geometría: Polígono)</td>
<td>Aporte Alcaldía local de Santa Fe [21].</td>
<td>sin modificación.</td>
<td>Categórico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores.

5.2.3. Modelo físico (model builder)
La construcción del modelo físico se realizó en el software ArcGIS 10.5 a través de la aplicación Model Builder [14]. Se organizaron los procesos tomando como referencia el modelo conceptual previamente planteado. El modelo físico incluyó una reclasificación de las capas por variable con los valores de cada ponderación, se realizó la combinación de variables por componente. La combinación de capas por categoría se realizó con los pesos determinados a partir de pares de Satty [10].

5.3. IDENTIFICACIÓN DE ÁREAS VULNERABLES A LA EXPANSIÓN Y REBROTE DEL RETAMO ESPINOSO
Contando con el raster de Susceptibilidad Total de la localidad (model builder, ver anexo 2) y mediante herramientas de geoprocesamiento de ArcGIS 10.5, se calculó el área en hectáreas (Ha) y porcentaje de susceptibilidad a la expansión del retamo espinoso en la localidad de Santa Fé, así mismo, se identificó mediante el mapa base del IDECA los sitios susceptibles a la propagación. (Ver anexo 1).
6. RESULTADOS

6.1 MODELO CONCEPTUAL

La figura 2 ilustra la forma en que se agruparon y jerarquizaron las variables de mayor influencia para la definición de las áreas con mayor susceptibilidad a la expansión y rebrote del retamo espinoso, producto de los criterios de 3 profesionales conocedores del tema.

Figura 2. Modelo conceptual.

La ponderación de atributos de variables que influyen en el nicho del retamo espinoso se realizó con base en el conocimiento de los profesionales del presente estudio, complementado con revisión de fuentes externas. Algunos de los atributos de tipo continuo, se ajustaron conforme el rango de la variable manejado para la zona de estudio. (Ver tabla 2).

Las principales fuentes utilizadas como apoyo para la ponderación de variables derivaron principalmente del trabajo de grado titulado modelamiento de la Distribución de los Nichos Adecuados para la Invasión Biológica del Retamo Espinoso (*Ulex europaeus*) en la Cuenca Alta del Río Bogotá, Vulnerabilidad y Escenarios Futuros[^6^], además de otros trabajos y guías técnicas que han descrito de manera aproximada la influencia de variables en el retamo espinoso[^15^][^16^][^17^][^19^].
6.2 PONDERACIÓN DE CAPAS

Tabla 2. Ponderaciones por componente.

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>VARIABLE</th>
<th>ATRIBUTO</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clima</td>
<td>Temperatura C°</td>
<td>9,9-24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 9,9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 24</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Radiación solar (3 categorías W/m² de estudio)</td>
<td>Alta</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baja</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Precipitación(mm)</td>
<td>1200mm-1400</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menos de 1200</td>
<td>2</td>
</tr>
<tr>
<td>Social</td>
<td>Proximidad a vías (distancia m)</td>
<td>< 60</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 60</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 50</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Densidad de viviendas(casas/Km²)</td>
<td>nov-25</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26-45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46-70</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>70</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 50</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>= 50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ciudad</td>
<td>1</td>
</tr>
<tr>
<td>Fisiografía</td>
<td>Pendientes (%)</td>
<td>Muy Alta >75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alta 50-75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media 25-50</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baja 7-25</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muy baja 0-7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Proximidad a cuerpos de agua (m)</td>
<td>< 30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Altitud (msnm)</td>
<td><2500</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500-3200</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>3200</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Autores.
<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>VARIABLE</th>
<th>ATRIBUTO</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobertura Vegetal</td>
<td>Cobertura Vegetal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tejido Urbano Continuo</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tejido urbano discontinuo</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Zonas industriales o comerciales</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Red vial, ferroviarias y terrenos asociados</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aeropuertos</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Obras hidráulicas</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Zonas de extracción minera</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Instalaciones recreativas</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Papa</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Banano y plátano</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pastos limpios</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pastos arbolados</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pastos enmalezados</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Tubérculos</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mosaico de cultivos</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mosaico de pasto y cultivos</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bosque natural denso</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bosque de mangle</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bosque Plantado</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pastos naturales y sabanas</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Arbustos y matorrales</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Vegetación esclerófila y/o espinosa</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Afloramientos rocosos</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Tierras desnudas o degradadas</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Ríos</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laguna</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autores.
<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>VARIABLE</th>
<th>ATRIBUTO</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edáfico</td>
<td>Suelos</td>
<td>MLCe</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGSg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEFg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGFf</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGTd</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZU</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLSg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLKd</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGFf</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGFf</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLKd</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RLQa</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Erosión</td>
<td>Sin erosión</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ligera</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderada</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severa</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muy severa</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urbano</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autores.

6.3 MATRICES DE SUBCRITERIOS

Como se puede observar en los datos de la tabla 3, la variable de mayor influencia para el subcriterio correspondiente al componente climático es la precipitación con un 71.56 % y, dado el hecho que la temperatura es una medida indirecta pero dependiente de la radiación solar, estas últimas variables tienen un peso relativamente igual.

Tabla 3. Matriz normalizada de subcriterios climáticos.

<table>
<thead>
<tr>
<th>NORMALIZACIÓN</th>
<th></th>
<th>Vector principal Normalizado</th>
<th>Peso %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>0,121104599</td>
<td>0,406375862</td>
<td>13,55</td>
</tr>
<tr>
<td>Precipitación</td>
<td>0,757790803</td>
<td>2,146797076</td>
<td>71,56</td>
</tr>
<tr>
<td>Radiación</td>
<td>0,121104599</td>
<td>0,446827062</td>
<td>14,89</td>
</tr>
</tbody>
</table>

Fuente: Autores.
La tabla 4 refleja que la variable de mayor influencia para el subcriterio del componente social es la proximidad a vías con un 65.74 %, por otro lado, la variable con menos dominio para este análisis de pesos resulta ser la de densidad de viviendas con 10.12 %, esto se debe a que, en la mayor parte de la zona estudiada la cantidad de residencias se limita a las pocas presentes en la parte rural.

Tabla 4. Matriz normalizada de subcriterios sociales.

<table>
<thead>
<tr>
<th>DENSIDAD DE VIVIENDAS</th>
<th>PROXIMIDAD VÍAS</th>
<th>ÁREA URBANA</th>
<th>VECTOR PRINCIPAL</th>
<th>VECTOR PRINCIPAL NORMALIZADO</th>
<th>PESO %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10455151</td>
<td>0,11204194</td>
<td>0,087085518</td>
<td>0,303678968</td>
<td>0,10</td>
<td>10,12</td>
</tr>
<tr>
<td>0,621446018</td>
<td>0,665968545</td>
<td>0,684685862</td>
<td>1,972100425</td>
<td>0,66</td>
<td>65,74</td>
</tr>
<tr>
<td>0,274002471</td>
<td>0,221989515</td>
<td>0,228228621</td>
<td>0,724220607</td>
<td>0,24</td>
<td>24,14</td>
</tr>
</tbody>
</table>

Fuente: Autores.

La tabla 5 refleja que la variable de mayor influencia para el subcriterio fisiográfico es la altitud con 61.08 % y, esta última, es aproximadamente el doble que la pendiente que tiene 30.2 %.

Tabla 5. Matriz normalizada de subcriterios fisiográficos.

<table>
<thead>
<tr>
<th>PROXIMIDAD RÍOS</th>
<th>PENDIENTE</th>
<th>ALTITUD</th>
<th>VECTOR PRINCIPAL</th>
<th>VECTOR PRINCIPAL NORMALIZADO</th>
<th>PESO %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,089507947</td>
<td>0,072058169</td>
<td>0,10009546</td>
<td>0,261661576</td>
<td>0,09</td>
<td>8,72</td>
</tr>
<tr>
<td>0,350411764</td>
<td>0,282098193</td>
<td>0,273574739</td>
<td>0,906084696</td>
<td>0,30</td>
<td>30,20</td>
</tr>
<tr>
<td>0,560080289</td>
<td>0,645843638</td>
<td>0,626329801</td>
<td>1,832253728</td>
<td>0,61</td>
<td>61,08</td>
</tr>
</tbody>
</table>

Fuente: Autores.

La tabla 6 evidencia que la erosión con un peso de 65 % es más influyente que el tipo de suelo a pesar de que este último contenga información referente a textura, drenaje, profundidad efectiva, pH, entre otras variables que contribuyen en el éxito de la propagación, rebrote y establecimiento de la especie.

Tabla 6. Normalización de subcriterios edáficos.

<table>
<thead>
<tr>
<th>SUBCRITERIO</th>
<th>PESO %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosión</td>
<td>65</td>
</tr>
<tr>
<td>Suelo</td>
<td>38</td>
</tr>
</tbody>
</table>

Fuente: Autores.
La tabla 7 muestra que las dos variables con mayor peso son la cobertura con 37.54% y, el clima con 30.14, nótese que entre ellas suman 67.68 % lo que quiere decir que son críticas a la hora de definir áreas de susceptibilidad a la expansión y rebrote del retamo espinoso.

Tabla 7. Normalización de criterios.

<table>
<thead>
<tr>
<th>NORMALIZACIÓN</th>
<th>COBERTURA</th>
<th>CLIMA</th>
<th>EDÁFICO</th>
<th>FISIOGRÁFICA</th>
<th>SOCIAL</th>
<th>Vector principal</th>
<th>Vector principal Normalizado</th>
<th>PESO %</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBERTURA</td>
<td>0,373665</td>
<td>0,320784</td>
<td>0,506466</td>
<td>0,371827</td>
<td>0,304348</td>
<td>1,877091</td>
<td>0,38</td>
<td>37,54</td>
</tr>
<tr>
<td>CLIMA</td>
<td>0,373665</td>
<td>0,320784</td>
<td>0,243484</td>
<td>0,264510</td>
<td>0,304348</td>
<td>1,506791</td>
<td>0,30</td>
<td>30,14</td>
</tr>
<tr>
<td>EDÁFICO</td>
<td>0,124555</td>
<td>0,222419</td>
<td>0,168822</td>
<td>0,264510</td>
<td>0,217391</td>
<td>0,997697</td>
<td>0,20</td>
<td>19,95</td>
</tr>
<tr>
<td>FISIOGRÁFICA</td>
<td>0,074733</td>
<td>0,090187</td>
<td>0,047463</td>
<td>0,074365</td>
<td>0,130435</td>
<td>0,417183</td>
<td>0,08</td>
<td>8,34</td>
</tr>
<tr>
<td>SOCIAL</td>
<td>0,053381</td>
<td>0,045826</td>
<td>0,033764</td>
<td>0,024788</td>
<td>0,043478</td>
<td>0,201238</td>
<td>0,04</td>
<td>4,02</td>
</tr>
</tbody>
</table>

Fuente: Autores.
7. ANÁLISIS DE RESULTADOS

7.1 ÁREAS CON MAYOR PROBABILIDAD A LA EXPANSIÓN Y REBROTE DE RETAMO ESPINOSO

Dado que el retamo espinoso es una especie heliófila [22], el componente climático resulta ser el criterio que representa aproximadamente la tercera parte del peso que define las áreas más propensas a la invasión de la planta. La figura 3 muestra que la mayor susceptibilidad (Susceptibilidad alta) a la expansión y rebrote del retamo espinoso se encuentra ubicada en la zona nororiental del área de estudio afectando los ríos Teusacá y el canal la Perseverancia.

Figura 3. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio climático.

Fuente: Autores.

[22] Heliófita: Cualquier especie de planta que requiere de plena exposición a la luz solar para vivir y desarrollarse y por lo tanto son absolutamente intolerantes a la sombra, motivo por el cual las encontramos creciendo solamente en áreas descubiertas como potreros, charrales o abandonos.
El componente social hace parte de las variables que influyen en la proliferación de especies consideradas exóticas y, para este caso en particular, la proximidad las vías es la variable más importante por lo que las dos mayores áreas con alta Susceptibilidad a la expansión y rebrote del retamo espinoso se encuentran en la parte occidental entre el límite urbano (color amarillo para este caso) y rural (color verde para este caso) y, de forma alargada (norte-sur) en la parte norte de la localidad (figura 4).

Figura 4. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio social.

La pendiente y la altitud son variables decisivas para el éxito del establecimiento del retamo espinoso, es importante recordar que la temperatura varía según la altura en zonas tropicales y, que el aumento en la temperatura puede hacer que la especie colonice tierras más altas a las que por el momento no pueda llegar afectando los páramos. La figura 5 ilustra como la especie según estos criterios, puede potencialmente expandirse en la zona occidental y en la zona centro-norte del área

Fuente: Autores.
de estudio, donde se ubican los ríos Teusacá y san francisco, así como el canal de la perseverancia.

Figura 5. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio fisiográfico.

La cobertura es el criterio más importante para definir las potenciales áreas susceptibles a la expansión y rebrote de retamo espinoso, por lo que este mapa es un excelente indicador de la ubicación de dichas áreas. La figura 6 muestra que la zona nororiental donde se ubica el río Teusacá, es la más susceptible a la proliferación y posterior establecimiento de la especie, mientras que la zona occidental donde se encuentra el tejido urbano, la susceptibilidad es baja.

Fuente: Autores.
Figura 6. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio de cobertura.

Dentro del componente edáfico se utilizaron 2 variables determinantes en la expansión de la especie, la erosión la cual favorece el establecimiento de la especie y a tipología de suelo la cual tiene información referente a geología, génesis, textura, drenaje, profundidad, pH y otros factores que en conjunto pueden ser restrictivos o potenciales para el establecimiento de una especie en específico, en este caso, la mayor susceptibilidad (Susceptibilidad Muy alta) a la expansión y rebrote del retamo espinoso se encuentra ubicada en la zona oriental del área de estudio cubriendo casi la totalidad del río Teusacá. (Figura 7).
Figura 7. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso para el criterio edáfico.

La figura 8 muestra que la mayor susceptibilidad (Susceptibilidad alta) a la expansión y rebrote del retamo espinoso se encuentra ubicada en la zona oriental del área de estudio, las zonas restantes pertenecientes al mismo rango se pueden ubicar en tres grupos “alargados” (cada uno de norte a sur); uno, en la zona occidental que limita con la zona urbanizada (de color verde); otro, en la zona centro del área de estudio; y el tercero, cerca al área oriental donde se encuentra la mayor susceptibilidad. Se puede establecer que la mayor susceptibilidad a expansión y rebrote del retamo espinoso en la localidad de Santa Fe se encuentra en cercanía a la cuenca que comprende el área del río Teusacá, por otra parte, se pueden encontrar zonas que en su mayoría se encuentran en susceptibilidad media, principalmente en el barrio Parque Nacional, sin embargo, los alrededores de cuerpos de agua tales como Río San Francisco y Canal la perseverancia, presentan pequeños parches con alta susceptibilidad a la expansión y rebrote de la especie.

Fuente: Autores.
Figura 8. Mapa de susceptibilidad a la expansión y rebrote de retamo espinoso.

La tabla 8, muestra el resultado del modelo con los 5 criterios formados a su vez por 12 subcriterios, lo que indica que el 38.3 % del área de estudio presenta una alta susceptibilidad a la expansión y rebrote del retamo espinoso lo que significa que es en esta área donde se deben realizar las labores más inmediatas de prevención. Se recomienda labores de restauración en las zonas descritas en el mapa final (hoya Teusacá, alrededores del Río San francisco y el canal La Perseverancia).

Tabla 8. Áreas y porcentajes de la susceptibilidad a la expansión y rebrote del retamo espinoso.

<table>
<thead>
<tr>
<th>COLOR</th>
<th>Área (Ha)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>940,2</td>
<td>20,8</td>
</tr>
<tr>
<td>Media</td>
<td>1843,0</td>
<td>40,8</td>
</tr>
<tr>
<td>Alta</td>
<td>1729,8</td>
<td>38,3</td>
</tr>
<tr>
<td>Total</td>
<td>4512,9</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fuente: Autores.
CONCLUSIONES

El retamo espinoso tiene una alta capacidad invasiva debido al amplio espectro de zonas de vida y condiciones edáficas, fisiográficas y edafoclimáticas propicias para su proliferación y establecimiento, características coincidentes con las que cuenta la zona de estudio en un 38.3 %.

La variable más importante y que puede definir en gran medida las áreas de potencial expansión del retamo espinoso, es el tipo de cobertura, esto se explica debido a que la especie es pionera (gusta del sol, tiene pocos requerimientos nutritivos en el suelo, es de crecimiento rápido), lo que se traduce en una llegada y establecimiento rápido mucho antes que otras plantas puedan hacerlo. En ese sentido, el cambio de uso del suelo, sobre todo de vegetación densa a cultivos de todo tipo, y pastos limpios, favorecen en gran medida la capacidad invasiva de la especie.

Si bien es cierto que existen factores limitantes para la expansión de la especie como la altitud, es importante resaltar que esta última está relacionada con la temperatura, y que en la medida en que esta última aumente, hará que el rango altitudinal de la planta también lo haga, permitiendo que la especie colonice tierras más altas a las que por el momento no puede acceder.

La gran cantidad de información, amplia extensión que puede abarcar (zona de estudio) y fácil manejo del modelo, hacen de este último una excelente herramienta para la toma de decisiones en cuanto a prevención y mitigación.

Este proyecto presentó algunos inconvenientes en el marco de la disponibilidad y escala de los insumos y la cantidad de criterios por profesional para la construcción del modelo.
RECOMENDACIONES

Se recomienda generar nuevos modelos, que permitan aproximar espacialmente el nicho adecuado para (*Ulex europaeus* L.). Los futuros análisis pueden incluir un mayor número de variables y de criterios profesionales.

Para estudios a escala local, se recomienda, definir de manera detallada los rangos de las variables continuas, al igual que el valor de ponderación, es necesario tener en cuenta que para algunas áreas pequeñas los cambios en sus variables es mínimo [15].

A partir de los resultados obtenidos del modelo de susceptibilidad generado por medio de análisis espaciales, se recomienda el desarrollo e incorporación de planes de manejo ambiental para realizar el apropiado control, sustitución y restauración ecológica en pro de evitar la expansión y rebrote del retamo espinoso que además involucre grupos interdisciplinarios de profesionales, los cuales, pueden evaluar diferentes variables partiendo de sus criterios como expertos que aporten al mejoramiento de las condiciones de calidad del ecosistema, consiguiendo así, como medida de acción, el equilibro ambiental de los cerros orientales de la ciudad de Bogotá, por medio de la restauración ecológica de zonas invadidas por *Ulex europaeus* L.(retamo espinoso).

Es necesario promover estudios espaciales de susceptibilidad como el elaborado durante este proyecto, efectuando la selección y preparación de terrenos que permitan procesos eficientes de reforestación y/o aumento de la densidad arbórea de especies ideales para frenar la problemática que se está presentando en la localidad de Santa fé, dichas especies vegetales tienen que tener las características de adaptabilidad a las condiciones climáticas de los cerros de la ciudad ayudando, por otro lado, a proteger la zona en lo referente a la sostenibilidad del entorno natural de los cuerpos de agua, evitar subsecuentemente la erosión de suelos, la propagación del retamo espinoso y contribuyan al mejoramiento de la calidad edáfica [16].
BIBLIOGRAFÍA

[19] PRADO; CASTILLO y MONTOYA. Diseño de experiencias piloto como estrategias de restauración ecológica en potreros abandonados e invadidos por
retamo espinoso (Ulex europaeus), en la sub-cuenca media y alta del río Teusacá, cerros orientales de Bogotá. DAMA.

Anexo 1. Mapa- SUSCEPTIBILIDAD TOTAEXPANSIÓN Y REBROTE RETAMO ESPINOSO.

Fuente: Autores.
Anexo 2. MODELO- MODEL BUILDER
(ver PDF)